A soft/hard magnetic nanostructure based on multisegmented CoNi nanowires.
نویسندگان
چکیده
In this paper we have introduced a new soft/hard nanostructure based on multisegmented CoNi nanowire arrays having diameters of around 110 nm and made of five segments with nominal compositions of Co, Co66Ni33, Co50Ni50, Co33Ni66 and Ni, each of which has a length of 800 nm, so that the total length of the multisegmented nanowire is 4 μm. These arrays have been synthesized by means of potentiostatic electrodeposition into the pores of hard-anodic alumina templates. The morphology, chemical composition and microstructure of the multisegmented CoNi nanowires were determined by high-resolution scanning electron microscopy, energy dispersive X-ray microanalysis, and powder X-ray diffraction method, respectively. The room temperature magnetic behavior of the multisegmented nanowire arrays is also studied and compared with CoNi nanowire arrays with homogeneous composition (non-segmented nanowires), synthesized in the same templates and having the same dimensions as the segmented ones. These nanostructures could be used to control the movement of magnetic domain walls. In this way, these nanostructures can be an alternative to store information or even perform logic functions.
منابع مشابه
The effect of pulsed electrodeposition parameters on the microstructure and magnetic properties of the CoNi nanowires
CoNi nanowires were deposited by pulsed electrodeposition technique into porous alumina templates. The effect of off time between pulses (toff) and reductive/oxidative time (treduc/oxid) on the microstructure and magnetic properties of the CoNi nanowires were investigated. Maximum coercivity and squareness were obtained for samples fabricated at treduc/oxid= 0.5 ms and toff =400 ms. The coerciv...
متن کاملMagnetically Assembled Multisegmented Nanowires and Their Applications
Here we report a cost effective and versatile way of synthesizing and assembling multi-functional (e.g., goldpolypyrrole-nickel-gold) nanowires. Multisegmented nanowires were synthesized using electrodeposition method for precise control over segment dimensions for proper expression of material functionality. The nanowires were integrated on microfabricated electrodes using magnetic dipole inte...
متن کاملNi-Co Alloy and Multisegmented Ni/Co Nanowire Arrays Modulated in Composition: Structural Characterization and Magnetic Properties
Design of novel multisegmented magnetic nanowires can pave the way for the next generation of data storage media and logical devices, magnonic crystals, or in magneto-plasmonics, among other energy conversion, recovery, and storage technological applications. In this work, we present a detailed study on the synthesis, morphology, structural, and magnetic properties of Ni, Co, and Ni-Co alloy an...
متن کاملSuperparamagnetic behavior in ultrathin CoNi layers of electrodeposited CoNi/Cu multilayer nanowires
We present evidence that in a very thin regime the magnetic layers become discrete islands and superparamagnetic in multilayered CoNi 1–17 nm /Cu 4.2 nm nanowires grown by pulsed electrodeposition using a hole pattern of anodized alumina templates. Magnetic hysteresis loops measured at room temperature using a vibrating sample magnetometer show that superparamagnetism appears at t CoNi 1.7 nm, ...
متن کاملElectroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates
Highly hexagonally ordered hard anodic aluminum oxide membranes, which have been modified by a thin cover layer of SiO2 deposited by atomic layer deposition method, were used as templates for the synthesis of electrodeposited magnetic Co-Ni nanowire arrays having diameters of around 180 to 200 nm and made of tens of segments with alternating compositions of Co54Ni46 and Co85Ni15. Each Co-Ni sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2015